Training
Beim Training lernt ein Modell aus Beispielen. Anhand der Beispiele versucht das Modell, ein Ergebnis vorherzusagen (beispielsweise einen Lückentext korrekt zu füllen) und gleicht am Ende jedes Zyklus seine Ergebnisse mit den echten Werten ab. Wenn das Ergebnis falsch ist, wird das zugrunde liegende statistische Modell angepasst und ein neuer Versuch gestartet. In der Regel läuft ein Training so lange, bis sich das statistische Modell kaum mehr ändert, die Ergebnisse also stabil werden. Dies kann nach wenigen Minuten (klassisches Machine Learning) oder Wochen/Monaten (Deep Learning auf sehr großen Datenmengen) der Fall sein.